
This guide will take you through the first steps of
getting started with Hapio, and will guide you all

the way from registering an account to creating your
first booking.

Getting started
with .Hapio

Register
The first step is to in the Hapio Portal. Enter your name, email address, and
password, and click on Register. Hapio will then send you an email so that you can verify your account.
Remember that multiple people can be invited to join projects, so each person can have their own
account in the Hapio Portal.

register an account

Create your first project
When you have verified your account, you will be logged in to the Hapio Portal. Click on Create your
first project on the dashboard, or click on the project selector in the top navigation bar, and click on
Create New Project.

https://hapio.app/register

Once you have chosen a name for your project, click on Create.

All new projects are on the free plan by default, and this plan is perfect for getting started with Hapio and
can be used for development purposes. If you want to increase the limits for your project, you can
subscribe to any of the paid plans. Subscription plans are chosen per project, so each project can have
a subscription plan that is suitable for that specific project.

Create an API token
If you look in the project selector in the top navigation bar, your newly created project should be selected
as your current project. If it is not selected, click on the project selector and select your project. Now,
you can click on API Tokens in the top navigation bar, to get to the administration page for your API
tokens. This page will list all API tokens that have been created for the project, and will also let you
create new tokens. Enter a name for your token, select the abilities that your token should have, and
click on Create. In this case, we will leave all abilities selected for simplicity, but remember that you
should tailor each of your tokens to only have the abilities that it actually needs, in order to increase
security.

Once you have created your token, the generated token will be shown for you to copy and store in a
secure location. It's important to copy your token now, since this is the only time it will be shown, and it
cannot be retrieved at a later point. All created API tokens will be listed on the bottom of the page, and
from there you can edit the abilities of each token, and also delete any token if needed.

Your first request
Now that you have registered an account, created a project, and also created an API token for your
project, you are ready to make your first request to the Hapio API. In order to authenticate your request,
you must include your token in the Authorization header, using the bearer authorization scheme. For our
first request, we will send a GET request to the endpoint . This endpoint will simply return
information about the project that the API token belongs to. This request can look like this:

/v1/project

GET HTTP 2
 v1 project
 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

/ / /
- -
/

Host:
Accept:
Authorization:

HTTP

use Hapio\Sdk\ApiClient;

$apiClient ();

$project $apiClient () ();

= new

= -> ->

ApiClient

projects getCurrentProject

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

PHP

import from

const =

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'project'

apiClient

project

create

get then response

JavaScript

It's important to note that in these examples, a dummy token will be included, since we want to show
the entire request. You should of course always take the necessary steps to protect your tokens, and
never show them to unauthorized people unless they are tokens intended to be public with limited
abilities.

Here is the response:

https://docs.hapio.io/#tag/Projects/operation/getYourProject

Map your entities
You have now made your first request to the Hapio API, so let's get started with something a little more
interesting. The first thing we need to do is to map our real-world entities to the entities that are available
in Hapio. Let's say that we run a medical clinic, and want to use Hapio to manage appointments with
doctors in this clinic. In this case, each doctor can be represented as a resource in Hapio, and each of
the services that are offered can be represented as a service in Hapio. The clinic itself can be
represented as a location in Hapio. Our mapping then looks like this:

This setup will allow us to easily add more doctors, services and clinics to our booking system as
needed.

HTTP 2 200

24 2023 08 39 02 GMT

199

100

99

KKCN

 "id": "ac590ea9-e8a1-47eb-b301-452531ac962d",

 "name": "My first project",

 "enabled": true,

 "created_at": "2023-08-24T07:51:58+00:00",

 "updated_at": "2023-08-24T07:51:58+00:00"

/

- /
-

- -
- -
- -

- - - *

- - =

: Thu, Aug : :

content : application json

content :
cache : no cache, private

x ratelimit :
x ratelimit :
access control allow :
apigw : gMUFiAEJZw

{

}

date
type
length

control
limit
remaining

origin
requestid

HTTP

Real world Hapio

Doctor Resource

Service Service

Clinic Location

Create a resource
We will begin the process of implementing our real-world scenario in Hapio by creating a resource for
one of our doctors, by sending a POST request to the endpoint :/v1/resources

POST HTTP 2

84

"name": "Dr. Smith",

 "max_simultaneous_bookings": 1,

 "enabled": true

 v1 resources
 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

application/json

{

}

/ / /
- -
/

Host:
Accept:
Authorization:
Content-Type:
Content-Length:

HTTP

use Hapio\Sdk\ApiClient;

use Hapio\Sdk\Models\Resource;

$apiClient ();

$resource ();

$resource name ;

$resource maxSimultaneousBookings ;

$resource enabled ;

$resource $apiClient () ($resource);

= new

= new
-> =
-> =
-> =

= -> ->

ApiClient

Resource

resources store

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'Dr. Smith'
1

true

PHP

https://docs.hapio.io/#tag/Resources/operation/postResource

import from

const =

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (, {

 name: ,

 max_simultaneous_bookings: ,

 enabled:
}). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'resources'
'Dr. Smith'

apiClient

1
true

resource

create

post

then response

JavaScript

The response for this request will include all information about our created resource:

HTTP 2 201
24 2023 08 58 05 GMT

282

100

99

"id": "c8924e50-af0d-47ae-bf5d-e184b1b59a60",

 "name": "Dr. Smith",

 "max_simultaneous_bookings": 1,

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "updated_at": "2023-08-24T08:58:04+00:00",

 "created_at": "2023-08-24T08:58:04+00:00"

/

/

*

=

: Thu, Aug : :

: application json

:

:
:

:
: no-cache, private

: KKFAihv0liAEJTw

{

}

date
content-type
content-length
x-ratelimit-limit
x-ratelimit-remaining
access-control-allow-origin
cache-control
apigw-requestid

HTTP

Create a service
Now, it is time to create our first service by sending a POST request to the endpoint :/v1/services

POST HTTP 2

"name": "Physical Exam",

 "price": "149.000",

 "type": "fixed",

 "duration": "PT50M",

 "bookable_interval": "PT1H",

 "buffer_time_after": "PT10M",

 "booking_window_start": "PT2H",

 "booking_window_end": "P14D",

 "cancelation_threshold": "PT12H",

 "enabled": true

 v1 services
 eu central 1.hapio.net

 Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

 application/json

 297

{

}

/ / /
- -
/

Host:
Accept:
uthorization:

Content-Type:
Content-Length:

A

HTTP

use Hapio\Sdk\ApiClient;

use Hapio\Sdk\Models\Service;

$apiClient ();

$service ();

$service name ;

$service price ;

$service type ;

$service duration ;

$service bookableInterval ;

$service bufferTimeAfter ;

$service bookingWindowStart ;

$service bookingWindowEnd ;

$service cancelationThreshold ;

$service enabled ;

$service $apiClient () ($service);

= new

= new
-> =
-> =
-> =
-> =
-> =
-> =
-> =
-> =
-> =
-> =

= -> ->

ApiClient

Service

services store

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'Physical Exam'
'149.000'

'fixed'
'PT50M'

'PT1H'
'PT10M'

'PT2H'
'P14D'

'PT12H'
true

PHP

https://docs.hapio.io/#tag/Services/operation/postService

import from

const =

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (, {

 name: ,

 price: ,

 type: ,

 duration: ,

 bookable_interval: ,

 buffer_time_after: ,

 booking_window_start: ,

 booking_window_end: ,

 cancelation_threshold: ,

 enabled:
}). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'services'
'Physical Exam'
'149.000'

'fixed'
'PT50M'

'PT1H'
'PT10M'

'PT2H'
'P14D'

'PT12H'

apiClient

true

service

create

post

then response

JavaScript

Again, the response for this request will include all information about our created service:

HTTP 2 201
24 2023 09 07 53 GMT

529

100

99

null
null

true

/

- /
-

- -
- -

- - - *

- -
- =

: Thu, Aug : :

content : application json

content :
x ratelimit :
x ratelimit :
access control allow :
cache : no cache, private

apigw : KKGchgzOliAEPQg

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :
}

date
type
length

limit
remaining

origin
control
requestid

HTTP

{

}

"id": "a09c4585-0519-44f6-a5ab-647aeffc6281",

 "name": "Physical Exam",

 "price": "149.000",

 "type": "fixed",

 "duration": "PT50M",

 "bookable_interval": "PT1H",

 "buffer_time_before": "PT0S",

 "buffer_time_after": "PT10M",

 "booking_window_start": "PT2H",

 "booking_window_end": "P14D",

 "cancelation_threshold": "PT12H",

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "updated_at": "2023-08-24T09:07:53+00:00",

 "created_at": "2023-08-24T09:07:53+00:00"

Create a location
Next up, we will create a location for our clinic by sending a POST request to the endpoint :/v1/locations

POST HTTP 2

"name": "Perfect Health - Stockholm",

 "time_zone": "Europe/Stockholm",

 "resource_selection_strategy": "equalize",

 "enabled": true

 v1 locations
 eu central 1.hapio.net

Bearer  
GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

application/json

149

{

}

/ / /
- -
/

Host:
Accept:
Authorization:

Content-Type:
Content-Length:

HTTP

https://docs.hapio.io/#tag/Locations/operation/postLocation

use Hapio\Sdk\ApiClient;

use Hapio\Sdk\Models\Location;

$apiClient ();

$location ();

$location name ;

$location timeZone ;

$location resourceSelectionStrategy ;

$location enabled ;

$location $apiClient () ($location);

= new

= new
-> =
-> =
-> =
-> =

= -> ->

ApiClient

Location

locations store

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'Perfect Health - Stockholm'
'Europe/Stockholm'

'equalize'
true

PHP

import from

const =

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (, {

 name: ,

 time_zone: ,

 resource_selection_strategy: ,

 enabled:
}). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'locations'
'Perfect Health - Stockholm'

'Europe/Stockholm'
'equalize'

apiClient

true

location

create

post

then response

JavaScript

As with the previous requests, the response will include all information about our created location:

HTTP 2 201
24 2023 09 42 13 GMT

347

/

- /
-

- -

: Thu, Aug : :

content : application json

content :
cache : no cache, private

date
type
length

control

HTTP

x ratelimit :
x ratelimit :
access control allow :
apigw : KKLeXiW5FiAEMiA

{

}

- -
- -

- - - *

- =

limit
remaining

origin
requestid

100

99

"id": "2b113cf6-5d6c-4a31-bd21-88ba7fb440ea",

 "name": "Perfect Health - Stockholm",

 "time_zone": "Europe/Stockholm",

 "resource_selection_strategy": "equalize",

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "updated_at": "2023-08-24T09:42:13+00:00",

 "created_at": "2023-08-24T09:42:13+00:00"

Connect the resource with the service
Now that both our first resource and service are created, we need to associate them with each other.
This tells Hapio that the resource (our doctor) is able to perform the service. We do this by sending a
PUT request to the endpoint :/v1/services/{service ID}/resources/{resource ID}

PUT 0519
HTTP 2

 v1 services a09c4585 44f6 a5ab 647aeffc6281 
resources c8924e50 af0d 47ae bf5d e184b1b59a60

 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

/ / / - - - -
/ / - - - - /

- -
/

Host:
Accept:
Authorization:

HTTP

use Hapio\Sdk\ApiClient;

$apiClient ();

$association $apiClient () (

 $service id,

 $resource id

);

= new

= -> ->
->
->

ApiClient

services associateResource

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

PHP

https://docs.hapio.io/#tag/Services/operation/putServiceResource

import from

const =

+ + +
function

const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (service.id  
resource.id). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'services/' '/resources/'

apiClient

association

create

put
then response

JavaScript

The response includes information about this association:

HTTP 2 201
24 2023 09 55 13 GMT

213

100

99

"service_id": "a09c4585-0519-44f6-a5ab-647aeffc6281",

 "resource_id": "c8924e50-af0d-47ae-bf5d-e184b1b59a60",

 "created_at": "2023-08-24T09:55:13+00:00",

 "updated_at": "2023-08-24T09:55:13+00:00"

/

- /
-

- -
- -

- - - *

- -
- =

: Thu, Aug : :

content : application json

content :
x ratelimit :
x ratelimit :
access control allow :
cache : no cache, private

apigw : KKNYPiW6FiAEPSw

{

}

date
type
length

limit
remaining

origin
control
requestid

HTTP

Set up a schedule
The last thing we need to do is to set up a schedule for our doctor. This will tell Hapio when Dr. Smith
(our resource) is available for bookings at our clinic. Let's assume Dr. Smith's working hours are Monday
through Friday, 08:00 to 17:00, with lunch between 12:00 and 13:00. For this kind of working hours, a
recurring schedule is the best option, since this lets us set up a schedule that repeats every week.

We start by creating a recurring schedule by send a POST request to the endpoint
:

/v1/resources/
{resource ID}/recurring-schedules

POST

HTTP 2

"location_id": "2b113cf6-5d6c-4a31-bd21-88ba7fb440ea",

 "start_date": "2023-08-24"

 v1 resources c8924e50 af0d 47ae bf5d e184b1b59a60
recurring schedules  

 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

application/json

93

{

}

/ / / - - - - / 
-

/
- -
/

Host
Accept:
Authorization:
Content-Type:
Content-Length:

:

HTTP

use Hapio\Sdk\ApiClient;

use Hapio\Sdk\Models\RecurringSchedule;

$apiClient ();

$recurringSchedule ();

$recurringSchedule locationId $location id;

$recurringSchedule start_date ;

$recurringSchedule $apiClient () (

 [$resource id],

 $recurringSchedule

);

= new

= new
-> = ->
-> =

= -> ->
->

ApiClient

RecurringSchedule

recurringSchedules store

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'2023-08-24'

PHP

import from

const =

+ +

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (resource.id , {

 location_id: location.id,

 start_date:
}). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'resources/' '/recurring-schedules'

'2023-08-24'

apiClient

recurringSchedule

create

post

then

JavaScript

https://docs.hapio.io/#tag/Recurring-schedules/operation/postResourceRecurringSchedule
https://docs.hapio.io/#tag/Recurring-schedules/operation/postResourceRecurringSchedule

apiClient. (resource.id , {

 location_id: location.id,

 start_date:
}). (() {

 response.data;

});

post

then

'resources/' '/recurring-schedules'

'2023-08-24'

+ +

function
const =

response
recurringSchedule

As you can see, the request includes the ID of our location, since every recurring schedule belongs to a
specific location. As usual, the response include all information about the recurring schedule that we just
created, including the location that it belongs to:

HTTP 2 201
24 2023 10 20 42 GMT

605

100

99

"id": "e518071e-b4d6-4e98-a12f-04b44276e93c",

 "location":
 "id": "2b113cf6-5d6c-4a31-bd21-88ba7fb440ea",

 "name": "Perfect Health - Stockholm",

 "time_zone": "Europe/Stockholm",

 "resource_selection_strategy": "equalize",

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "created_at": "2023-08-24T09:42:13+00:00",

 "updated_at": "2023-08-24T09:42:13+00:00"

 "start_date": "2023-08-24",

 "end_date": null,

 "updated_at": "2023-08-24T10:20:42+00:00",

 "created_at": "2023-08-24T10:20:42+00:00"

/

- /
-

- -
- -

- - - *

- -
- =

: Thu, Aug : :

content : application json

content :
x ratelimit :
x ratelimit :
access control allow :
cache : no cache, private

apigw : KKRHFiBLFiAEM8g

{

{

 },

}

date
type
length

limit
remaining

origin
control
requestid

HTTP

Now, we can create schedule blocks in this recurring schedule. This is done by sending POST requests
to the endpoint

:

/v1/resources/{resource ID}/recurring-schedules/{recurring schedule ID}/schedule-

blocks

POST

4e98 HTTP 2

"weekday": "monday",

 "start_time": "08:00:00",

 "end_time": "12:00:00"

v1 resources c8924e50 af0d 47ae bf5d e184b1b59a60 recurring

schedules e518071e b4d6 a12f 04b44276e93c schedule blocks
 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

application/json

85

{

}

/ / / - - - - / - 
/ - - - - / - /

- -
/

Host:
Accept:
Authorization:
Content-Type:
Content-Length:

HTTP

use Hapio\Sdk\ApiClient;

use Hapio\Sdk\Models\RecurringScheduleBlock;

$apiClient ();

$recurringScheduleBlock ();

$recurringScheduleBlock weekday ;

$recurringScheduleBlock start_time ;

$recurringScheduleBlock end_time ;

$recurringScheduleBlock $apiClient () (

 [$resource id, $recurringSchedule id],

 $recurringScheduleBlock

);

= new

= new
-> =
-> =
-> =

= -> ->
-> ->

ApiClient

RecurringScheduleBlock

recurringScheduleBlocks store

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'monday'
'08:00:00'

'12:00:00'

PHP

import from

const =

+ + +
+

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (resource.id  
recurringSchedule.id , {

 weekday: ,

 start_time: ,

 end_time:
}). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'resources/' '/recurring-schedules/'
'/schedule-blocks'

'monday'
'08:00:00'

'12:00:00'

apiClient

recurringScheduleBlock

create

post

then

JavaScript

https://docs.hapio.io/#tag/Recurring-schedules/operation/postResourceRecurringScheduleBlock
https://docs.hapio.io/#tag/Recurring-schedules/operation/postResourceRecurringScheduleBlock

apiClient. (resource.id  
recurringSchedule.id , {

 weekday: ,

 start_time: ,

 end_time:
}). (() {

 response.data;

});

post

then

'resources/' '/recurring-schedules/'
'/schedule-blocks'

'monday'
'08:00:00'

'12:00:00'

+ + +
+

function
const =

response
recurringScheduleBlock

As you can see, our first schedule block in this recurring schedule is for Mondays from 08:00 to 12:00.
The schedule block ends at 12:00, since that's when Dr. Smith's lunch starts, and the next schedule
block should then start at 13:00. The response will, as usual, include all information about the created
recurring schedule block:

By continuing to create similar schedule blocks, we can fill up the entire week so that it reflects Dr.
Smith's working hours.

HTTP 2 201
24 2023 10 28 22 GMT

229

100

99

"id": "456da208-72d4-4ac0-b11c-324f4b5bcd34",

 "weekday": "monday",

 "start_time": "08:00:00",

 "end_time": "12:00:00",

 "created_at": "2023-08-24T10:28:22+00:00",

 "updated_at": "2023-08-24T10:28:22+00:00"

/

- /
-

- - - *

- -

- -
- -

- =

: Thu, Aug : :

content : application json

content :
access control allow :
cache : no cache, private

x ratelimit :
x ratelimit :
apigw : KKSPAj9rFiAEP6A

{

}

date
type
length

origin
control

limit
remaining

requestid

HTTP

Get bookable slots
Once we have our recurring schedule for the resource set up, we can retrieve bookable slots for the
service that we created. We do this by sending a GET request to the endpoint

:
/v1/services/{service ID}/

bookable-slots

GET
0519

2023 08 T08 00 00 00 2023 08 00 00 00
HTTP 2

v1 services a09c4585 44f6 a5ab 647aeffc6281 bookable slots

from 28 : 2 : to 28 : : 2 : loca 
tion 2b113cf6 5d6c 4a31 bd21 88ba7fb440ea

 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

/ / / - - - - / - ? 
= - - : % & = - - % &
= - - - - /

- -
/

B02 T10 B02

Host:
Accept:
Authorization:

HTTP

use Hapio\Sdk\ApiClient;

$apiClient ();

$page $apiClient () (

 $service id,

 [

 (),

 (),

 $location id,

]

);

= new

= -> ->
->

=> new
=> new

=> ->

ApiClient

services listBookableSlots

DateTime
DateTime

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'from' '2023-08-28 08:00:00+02:00'
'to' '2023-08-28 10:00:00+02:00'
'location'

PHP

import from

const =

+ +

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (service.id , {

 params: {

 from: ,

 to: ,

 location: location.id

 }

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'services/' '/bookable-slots'

'2023-08-28T08:00:00+02:00'
'2023-08-28T10:00:00+02:00'

apiClient create

get

JavaScript

https://docs.hapio.io/#tag/Services/operation/getServiceBookableSlots
https://docs.hapio.io/#tag/Services/operation/getServiceBookableSlots

}). (() {

 response.data;

});

then function
const =

response
page

Note that we need to include a time window and a location ID in the query string of the request, since
Hapio needs that information to determine when and where to look for bookable slots. It's important to
remember to URL encode any special characters in the query string, such as the plus sign between the
timestamp and the time zone offset.

The response includes a paginated list of bookable slots during the time window and at the location that
was requested. In this example, the time window was from 08:00 to 10:00 on a monday, and since we
have defined a schedule that is open during this time on mondays, we get two bookable slots, 08:00 to
08:50, and 09:00 to 09:50.

HTTP 2 200
24 2023 14 19 07 GMT

2302

100

99

"data"

"buffer_starts_at": "2023-08-28T08:00:00+02:00",

 "starts_at": "2023-08-28T08:00:00+02:00",

 "ends_at": "2023-08-28T08:50:00+02:00",

 "buffer_ends_at": "2023-08-28T09:00:00+02:00",

 "resources":

"id": "c8924e50-af0d-47ae-bf5d-e184b1b59a60",

 "name": "Dr. Smith",

 "max_simultaneous_bookings": 1,

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "created_at": "2023-08-24T08:58:04+00:00",

 "updated_at": "2023-08-24T08:58:04+00:00"

1
null

null
true

null
null

1
1

1

100
2

2

/

- /
-

- -
- -
- -

- - - *

- =

: Thu, Aug : :

content : application json

content :
cache : no cache, private

x ratelimit :
x ratelimit :
access control allow :
apigw : KK0COjkRFiAEMjw

{

 : [

 {

 [

 {

 }

]

 },

 {

 : ,

 : ,

 : ,

 : ,

 : [

 {

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :
 }

]

 }

],

 : {

 :

,

 :

,

 : ,

 :
 },

 : {

 : ,

 : ,

 : ,

 :

,

 : ,

 : ,

 :
 }

}

date
type
length

control
limit
remaining

origin
requestid

HTTP

]

 },

 {

 [

 {

 }

]

 }

],

 : {

 },

 : {

 }

}

"buffer_starts_at": "2023-08-28T09:00:00+02:00",

 "starts_at": "2023-08-28T09:00:00+02:00",

 "ends_at": "2023-08-28T09:50:00+02:00",

 "buffer_ends_at": "2023-08-28T10:00:00+02:00",

 "resources":

"id": "c8924e50-af0d-47ae-bf5d-e184b1b59a60",

 "name": "Dr. Smith",

 "max_simultaneous_bookings": 1,

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "created_at": "2023-08-24T08:58:04+00:00",

 "updated_at": "2023-08-24T08:58:04+00:00"

"links"

 "first": "https://eu-central-1.hapio.net/v1/services/a09c4585 

 -0519-44f6-a5ab-647aeffc6281/bookable-slots?from=2023-08-28T08%3A 

 00%3A00%2B02%3A00&location=2b113cf6-5d6c-4a31-bd21-88ba7fb440ea&to 

 =2023-08-28T10%3A00%3A00%2B02%3A00&page=1",

 "last": "https://eu-central-1.hapio.net/v1/services/a09c4585-0 

 519-44f6-a5ab-647aeffc6281/bookable-slots?from=2023-08-28T08%3A00% 

 3A00%2B02%3A00&location=2b113cf6-5d6c-4a31-bd21-88ba7fb440ea&to=20 

 23-08-28T10%3A00%3A00%2B02%3A00&page=1",

 "prev": null,

 "next": null

"meta"

"current_page": 1,

 "from": 1,

 "last_page": 1,

 "path": "https://eu-central-1.hapio.net/v1/services/a09c4585-05 

 19-44f6-a5ab-647aeffc6281/bookable-slots",

 "per_page": 100,

 "to": 2,

 "total": 2

Create your first booking
Now that everything is set up, and you have made a request to fetch bookable slots in order to find out
when the doctor is available, you are ready to create your first booking. Do this by sending a POST
request to the endpoint :
/v1/bookings

POST HTTP 2

"location_id": "2b113cf6-5d6c-4a31-bd21-88ba7fb440ea",

 "service_id": "a09c4585-0519-44f6-a5ab-647aeffc6281",

 "starts_at": "2023-08-28T08:00:00+02:00",

 "ends_at": "2023-08-28T08:50:00+02:00"

 v1 bookings
 eu central 1.hapio.net

Bearer GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz

application/json

209

{

}

/ / /
- -
/

Host:
Accept:
Authorization:
Content-Type:
Content-Length:

HTTP

use Hapio\Sdk\ApiClient;

use Hapio\Sdk\Models\Booking;

$apiClient ();

$booking ();

$booking locationId $location id;

$booking serviceId $service id;

$booking startsAt ();

$booking endsAt ();

$booking $apiClient () ($booking);

= new

= new
-> = ->
-> = ->
-> = new
-> = new

= -> ->

ApiClient

Booking

DateTime
DateTime

bookings store

'GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'2023-08-28 08:00:00+02:00'
'2023-08-28 08:50:00+02:00'

PHP

import from

const =

function
const =

 axios ;

 axios. ({

 baseURL: ,

 headers: { :

}

});

apiClient. (, {

 location_id: location.id,

 service_id: service.id,

 starts_at: ,

 ends_at:
}). (() {

 response.data;

});

'axios'

'https://eu-central-1.hapio.net/v1/'
'Authorization' 'Bearer  

GsAnhHagTllG9nniTAcwZWd4nUZXnGpAb9Ywyrxz'

'bookings'

'2023-08-28T08:00:00+02:00'
'2023-08-28T08:50:00+02:00'

apiClient

booking

create

post

then

JavaScript

https://docs.hapio.io/#tag/Bookings/operation/postBooking

apiClient. (, {

 location_id: location.id,

 service_id: service.id,

 starts_at: ,

 ends_at:
}). (() {

 response.data;

});

post

then

'bookings'

'2023-08-28T08:00:00+02:00'
'2023-08-28T08:50:00+02:00'

function
const =

response
booking

In this case, we only include the minimum amount of information needed to create a booking, namely the
location, the service, and the start and end timestamps. We let Hapio automatically fill in the rest,
including the resource (according to the resource selection strategy of the location).

As usual, the response include all information about the booking that you've just created:

HTTP 2 201
24 2023 14 36 20 GMT

1900

100

99

"id": "b3f06e22-2e2e-44a4-a9e5-7ed24b0a06a1",

 "resource":
 "id": "c8924e50-af0d-47ae-bf5d-e184b1b59a60",

 "name": "Dr. Smith",

 "max_simultaneous_bookings": 1,

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "created_at": "2023-08-24T08:58:04+00:00",

 "updated_at": "2023-08-24T08:58:04+00:00"

"service":
"id": "a09c4585-0519-44f6-a5ab-647aeffc6281",

 "name": "Physical Exam",

 "price": "149.000",

/

- /
-

- -
- -
- -

- - - *

- =

: Thu, Aug : :

content : application json

content :
cache : no cache, private

x ratelimit :
x ratelimit :
access control allow :
apigw : KK2jphEuliAEM4A

{

{

 },

 {

date
type
length

control
limit
remaining

origin
requestid

HTTP

}

"type": "fixed",

 "duration": "PT50M",

 "bookable_interval": "PT1H",

 "buffer_time_before": "PT0S",

 "buffer_time_after": "PT10M",

 "booking_window_start": "PT2H",

 "booking_window_end": "P14D",

 "cancelation_threshold": "PT12H",

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "created_at": "2023-08-24T09:07:53+00:00",

 "updated_at": "2023-08-24T09:07:53+00:00"

"location":

"id": "2b113cf6-5d6c-4a31-bd21-88ba7fb440ea",

 "name": "Perfect Health - Stockholm",

 "time_zone": "Europe/Stockholm",

 "resource_selection_strategy": "equalize",

 "metadata": null,

 "protected_metadata": null,

 "enabled": true,

 "created_at": "2023-08-24T09:42:13+00:00",

 "updated_at": "2023-08-24T09:42:13+00:00"

 "price": "149.000",

 "metadata": null,

 "protected_metadata": null,

 "is_temporary": false,

 "is_canceled": false,

 "starts_at": "2023-08-28T08:00:00+02:00",

 "ends_at": "2023-08-28T08:50:00+02:00",

 "buffer_starts_at": "2023-08-28T08:00:00+02:00",

 "buffer_ends_at": "2023-08-28T09:00:00+02:00",

 "created_at": "2023-08-24T14:36:20+00:00",

 "updated_at": "2023-08-24T14:36:20+00:00",

 "finalized_at": "2023-08-24T14:36:20+00:00",

 "canceled_at": null

 },

 {

 },

That's it! You have now gone through all the necessary steps to create your first booking in Hapio.

